java自带线程池和队列详细讲解

Java线程池使用说明

一简介

线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的。在jdk1.5之后这一情况有了很大的改观。Jdk1.5之后加入了java.util.concurrent包,这个包中主要介绍java中线程以及线程池的使用。为我们在开发中处理线程的问题提供了非常大的帮助。

二:线程池

线程池的作用:

线程池作用就是限制系统中执行线程的数量。
     根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列。

为什么要用线程池:

1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。

2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService。

比较重要的几个类:

ExecutorService 真正的线程池接口。
ScheduledExecutorService 能和Timer/TimerTask类似,解决那些需要任务重复执行的问题。
ThreadPoolExecutor ExecutorService的默认实现。
ScheduledThreadPoolExecutor 继承ThreadPoolExecutor的ScheduledExecutorService接口实现,周期性任务调度的类实现。

要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池。

1. newSingleThreadExecutor

创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

2.newFixedThreadPool

创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。

3. newCachedThreadPool

创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,

那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。

4.newScheduledThreadPool

创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

实例

1:newSingleThreadExecutor

MyThread.java

publicclassMyThread extends Thread {

    @Override

    publicvoid run() {

        System.out.println(Thread.currentThread().getName() + "正在执行。。。");

    }

}

TestSingleThreadExecutor.java

publicclassTestSingleThreadExecutor {

    publicstaticvoid main(String[] args) {

        //创建一个可重用固定线程数的线程池

        ExecutorService pool = Executors. newSingleThreadExecutor();

        //创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

        Thread t1 = new MyThread();

        Thread t2 = new MyThread();

        Thread t3 = new MyThread();

        Thread t4 = new MyThread();

        Thread t5 = new MyThread();

        //将线程放入池中进行执行

        pool.execute(t1);

        pool.execute(t2);

        pool.execute(t3);

        pool.execute(t4);

        pool.execute(t5);

        //关闭线程池

        pool.shutdown();

    }

}

输出结果

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-1正在执行。。。

2newFixedThreadPool

TestFixedThreadPool.Java

publicclass TestFixedThreadPool {

    publicstaticvoid main(String[] args) {

        //创建一个可重用固定线程数的线程池

        ExecutorService pool = Executors.newFixedThreadPool(2);

        //创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

        Thread t1 = new MyThread();

        Thread t2 = new MyThread();

        Thread t3 = new MyThread();

        Thread t4 = new MyThread();

        Thread t5 = new MyThread();

        //将线程放入池中进行执行

        pool.execute(t1);

        pool.execute(t2);

        pool.execute(t3);

        pool.execute(t4);

        pool.execute(t5);

        //关闭线程池

        pool.shutdown();

    }

}

输出结果

pool-1-thread-1正在执行。。。

pool-1-thread-2正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-2正在执行。。。

pool-1-thread-1正在执行。。。

3 newCachedThreadPool

TestCachedThreadPool.java

publicclass TestCachedThreadPool {

    publicstaticvoid main(String[] args) {

        //创建一个可重用固定线程数的线程池

        ExecutorService pool = Executors.newCachedThreadPool();

        //创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

        Thread t1 = new MyThread();

        Thread t2 = new MyThread();

        Thread t3 = new MyThread();

        Thread t4 = new MyThread();

        Thread t5 = new MyThread();

        //将线程放入池中进行执行

        pool.execute(t1);

        pool.execute(t2);

        pool.execute(t3);

        pool.execute(t4);

        pool.execute(t5);

        //关闭线程池

        pool.shutdown();

    }

}

输出结果:

pool-1-thread-2正在执行。。。

pool-1-thread-4正在执行。。。

pool-1-thread-3正在执行。。。

pool-1-thread-1正在执行。。。

pool-1-thread-5正在执行。。。

4newScheduledThreadPool

TestScheduledThreadPoolExecutor.java

publicclass TestScheduledThreadPoolExecutor {

    publicstaticvoid main(String[] args) {

        ScheduledThreadPoolExecutor exec = new ScheduledThreadPoolExecutor(1);

        exec.scheduleAtFixedRate(new Runnable() {//每隔一段时间就触发异常

                      @Override

                      publicvoid run() {

                           //throw new RuntimeException();

                           System.out.println("================");

                      }

                  }, 1000, 5000, TimeUnit.MILLISECONDS);

        exec.scheduleAtFixedRate(new Runnable() {//每隔一段时间打印系统时间,证明两者是互不影响的

                      @Override

                      publicvoid run() {

                           System.out.println(System.nanoTime());

                      }

                  }, 1000, 2000, TimeUnit.MILLISECONDS);

    }

}

输出结果

================

8384644549516

8386643829034

8388643830710

================

8390643851383

8392643879319

8400643939383

三:ThreadPoolExecutor详解

ThreadPoolExecutor的完整构造方法的签名是:ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) .

corePoolSize - 池中所保存的线程数,包括空闲线程。

maximumPoolSize-池中允许的最大线程数。

keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。

unit - keepAliveTime 参数的时间单位。

workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute方法提交的 Runnable任务。

threadFactory - 执行程序创建新线程时使用的工厂。

handler - 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。

ThreadPoolExecutor是Executors类的底层实现。

在JDK帮助文档中,有如此一段话:

“强烈建议程序员使用较为方便的Executors工厂方法Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)、Executors.newFixedThreadPool(int)(固定大小线程池)Executors.newSingleThreadExecutor()(单个后台线程)

它们均为大多数使用场景预定义了设置。”

下面介绍一下几个类的源码:

ExecutorService  newFixedThreadPool (int nThreads):固定大小线程池。

可以看到,corePoolSize和maximumPoolSize的大小是一样的(实际上,后面会介绍,如果使用无界queue的话maximumPoolSize参数是没有意义的),keepAliveTime和unit的设值表名什么?-就是该实现不想keep alive!最后的BlockingQueue选择了LinkedBlockingQueue,该queue有一个特点,他是无界的。

1.     public static ExecutorService newFixedThreadPool(int nThreads) {   

2.             return new ThreadPoolExecutor(nThreads, nThreads,   

3.                                           0L, TimeUnit.MILLISECONDS,   

4.                                           new LinkedBlockingQueue<Runnable>());   

5.         }

ExecutorService  newSingleThreadExecutor():单线程

1.     public static ExecutorService newSingleThreadExecutor() {   

2.             return new FinalizableDelegatedExecutorService   

3.                 (new ThreadPoolExecutor(1, 1,   

4.                                         0L, TimeUnit.MILLISECONDS,   

5.                                         new LinkedBlockingQueue<Runnable>()));   

6.         }

ExecutorService newCachedThreadPool():无界线程池,可以进行自动线程回收

这个实现就有意思了。首先是无界的线程池,所以我们可以发现maximumPoolSize为big big。其次BlockingQueue的选择上使用SynchronousQueue。可能对于该BlockingQueue有些陌生,简单说:该QUEUE中,每个插入操作必须等待另一个线程的对应移除操作。

1.     public static ExecutorService newCachedThreadPool() {   

2.             return new ThreadPoolExecutor(0, Integer.MAX_VALUE,   

3.                                           60L, TimeUnit.SECONDS,   

4.                                           new SynchronousQueue<Runnable>());   

  1.     }

先从BlockingQueue<Runnable> workQueue这个入参开始说起。在JDK中,其实已经说得很清楚了,一共有三种类型的queue。

所有BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:

如果运行的线程少于 corePoolSize,则 Executor始终首选添加新的线程,而不进行排队。(如果当前运行的线程小于corePoolSize,则任务根本不会存放,添加到queue中,而是直接抄家伙(thread)开始运行)

如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列,而不添加新的线程

如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。

queue上的三种类型。

 

排队有三种通用策略:

直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

有界队列。当使用有限的 maximumPoolSizes时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。  

BlockingQueue的选择。

例子一:使用直接提交策略,也即SynchronousQueue。

首先SynchronousQueue是无界的,也就是说他存数任务的能力是没有限制的,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走后才能继续添加。在这里不是核心线程便是新创建的线程,但是我们试想一样下,下面的场景。

我们使用一下参数构造ThreadPoolExecutor:

1.     new ThreadPoolExecutor(   

2.                 2, 3, 30, TimeUnit.SECONDS,    

3.                 new  SynchronousQueue<Runnable>(),    

4.                 new RecorderThreadFactory("CookieRecorderPool"),    

  1.             new ThreadPoolExecutor.CallerRunsPolicy());  

new ThreadPoolExecutor(

  2, 3, 30, TimeUnit.SECONDS,

  new SynchronousQueue<Runnable>(),

  new RecorderThreadFactory("CookieRecorderPool"),

  new ThreadPoolExecutor.CallerRunsPolicy());

 当核心线程已经有2个正在运行.

  1. 此时继续来了一个任务(A),根据前面介绍的“如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列,而不添加新的线程。”,所以A被添加到queue中。
  2. 又来了一个任务(B),且核心2个线程还没有忙完,OK,接下来首先尝试1中描述,但是由于使用的SynchronousQueue,所以一定无法加入进去。
  3. 此时便满足了上面提到的“如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。”,所以必然会新建一个线程来运行这个任务。
  4. 暂时还可以,但是如果这三个任务都还没完成,连续来了两个任务,第一个添加入queue中,后一个呢?queue中无法插入,而线程数达到了maximumPoolSize,所以只好执行异常策略了。

所以在使用SynchronousQueue通常要求maximumPoolSize是无界的,这样就可以避免上述情况发生(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。

原文链接:http://blog.csdn.net/sd0902/article/details/8395677

  1. da shang
    donate-alipay
               donate-weixin weixinpay

发表评论↓↓